High-Speed Integer
Multiplies and Divides

Donéld A. Branson
St. Louis, Missouri

.. If your processor has multiply/divide commands,

no problem. However, if it does not. . .

If you have written any amount of assembler code, you have
probably encountered a situation where you wanted to do a multipli-
cation or a division. If your processor has multiply/divide com-
mands, no problem. However, if it does not (as in the case of the
6502-series CPU in Commodore’s 8-bit computers), you may have
done a multiply by adding an operand to itself, decrementing the
operand at the same time until it reaches zero.

This is probably the most straightforward way to do a multiply, but a
binary multiply can be done the same way a person multiplies a
decimal number by hand. This way is as easy to do and, in all but a
few cases, is quite a bit faster.

Multiplication

First, let’s look at the way a decimal multiply is done, in order to
draw attention to some key elements in any multiply. The procedure
is expanded on the right to show more specifically what is happen-
ing here.

30, awil)e Dey = 25
Xx 156 < 2) 5+30 = 150
175 3) 10*5 = 50
350 4) 10+30 =_300
525 525

It can be seen that 35 has not been added to itself 15 times or 15
added to itself 35 times. Doing it that way would take longer and, if
you're doing it by hand, more prone to error.

What has been done is to multiply each digit in the first number
against all the digits in the other number.

This same method can be applied to binary multiplication.

In order to look at one binary digit (bit) at a time, a combination of
the LSR and ROR operations is used to shift the bit into the carry bit,
where it can be examined with a BCC or BCS operation. In this way,
one digit can be multiplied at a time. If this were a decimal multiply,
we would have to have a table of results for each possible combina-
tion of one digit multiplies, like this:

v e
102 =2
241 =2

2+2 =4

When we multiply decimal, we have this table in our heads.
However, the table is simplified when we do binary multiplication. If
fact, it is simplified to the point that the result of a multiply can be
one of two things: a zero bit or a one bit.

A result table does not need to be kept for binary multiplication. The
table is effectively implied in the operands.

For example:

15 = $0F = %0000 1111
35 = $23 = %0010 0011

00001111 Mt
x_ 00100011 M2
00001111
00001111
00000000
00000000
00000000
00001111
00000000
00000000
000001000001101 R
($020D = 525)

Now to look at the process in a way that can be easily represented in
a computer. We'll call the multiplicand M1, the multiplier M2, and
the field where the result is left R, like this:

M1:0000 0000 0000 1111
M2: 0000 0000 0010 0011
R: 0000 0000 0000 0000

The Transactor

July 1987: Volume 8, Issue O1




'!

Since the result will be sixteen bits (525 > 255), all the fields are
represented as sixteen bits.

First, M1 is shifted right, so that each bit can be looked at from right
to left as in the decimal multiply shown before. As you can see in the
example of binary multiplication above, the digit can be either one
or zero, and the result of the single-digit multiply is either zero, or a
duplicate of M2, properly shifted to the left. After each digit in M1 is
shifted into the carry bit, M2 is added to R if the carry is one, then
M2 is shifted left, in preparation for the next digit.

Here, 'SR’ stands for shift right, ‘SL' for shift left.

pass carry

1- SR M1: 0000 0000 0000 0111 1
R=R+M2: 0000 0000 0010 0011
SL M2: 0000 0000 0100 0110

2+ SR M1: 0000 0000 0000 0011 1
R=R+M2: 0000 0000 0110 1001
SL M2: 0000 0000 1000 1100

3- SR M1: 0000 0000 0000 0001 1
R=R+M2: 0000 0000 1111 0101
SL M2: 0000 0001 0001 1000

4 SR M1: 0000 0000 0000 0000 1
R=R+M2: 0000 0010 0000 1101
SL M2: 0000 0010 0011 0000

Note that we can stop here, because M1 is zero, and the carry bit
will no longer be set as a result of shifting M1, and therefore M2 will
not be added to R any more times. At this point, the result of the
multiply is left in R.

Division

Now we'll take a look at division. Binary division can also be done
by mimicking the way decimal division is done. Let's look at an
example of how to compute 43/5, giving a result of 8 rerainder 3.
Here's how it would be done by hand, in decimal.

8- 13
5) 43

40

3
1)8+5 = 40
2)43-40 = 3

M1 =5 = 00000101
R1 = 0000 0000

M2 = 43 = 00101011
R2 = 0000 0000

In the case of division, two result fields are needed, one for the
quotient, the other for the remainder. Specifically:

M1/M2 = R1rem R2

M2 will be shifted left into R2, and R2 will then be compared to M1.
If R2 is greater than or equal to M1, then M1 will fit into R2. The
result of a binary divide can be only a zero or a one, again saving us
the trouble of having a result table, as is necessary for decimal
division. If M1 will fit into R2, then we subtract M1 from R2, leaving
the result in R2, Finally, R1 is shifted left, with the carry bit from the
compare going into the least significant bit.

pass

1- SLM2intoR2 R2 = 0000 0000
CMP R2-M1 (carry clear)

M2 = 0101 0110

SL R1 R1 = 0000 0000
Here is how this process looks in assembler: 2- SLM2intoR2 R2 = 00000000 M2 = 10101100
_ CMP R2-M1 (carry clear)
MLOOP EQU = ;in PAL- MLOOP =+ SLR1 R1 = 0000 0000
LSR M1 :SRM1
ROR M1 +1 ;thecarry from M1 = M1 +1 3- SLM2intoR2 R2 = 00000001 M2 = 01011000
BCC SHIFT ;add on carry set CMP R2-M1 (carry clear)
CLE iR=R+M2 SLR1 R1 = 0000 0000
LDA M2+1
ADC R+ 1 4 SLM2intoR2 R2 = 00000010 M2 = 10110000
STA R+1 CMP R2-M1 (carry clear)
LDA M2 SLR1 R1 = 0000 0000
ADCH 5 SLM2intoR2 R2 = 00000101 M2 = 01100000
STA R
CMP R2-M1 (carry clear)
SHIFT EQU = 0000
ASKIIE 1., (M g; i R2-M1 2;_ - 0000 %(11
ROL M2 % R
LDA M1 +1 6 SLM2intoR2 R2 = 00000000 M2 = 1100 0000
BNE MLOOP CMP R2-M1 (carry clear)
LDA M1 JifM1and M1 +1=0 SLR1 R1 = 0000 0010
BNE MLOOP ;when we are done
RTS 7- SLM2into R2 R2 = 00000001 M2 = 1000 0000
M1 HEX 0023 :or .BYTE $00,$23 CMP R2-M1 (carry clear)
M2 HEX 000F ;or .BYTE $00,$0F SLR1 R1 = 0000 0100
R HEX 0000 :or .BYTE $00,%00 {. . .cont'd on page 45)
The Transactor

43 July 1987: Volume 8, Issue O1




|1

To signal that no secondary address is called for, put 255
(hex FF) into the Y register.

Both of the above calls should be followed soon by a call to
OPEN ($FFCO0). Because here's the catch: the above setup
does NOT work as expected if you're going to call LOAD
($FFDS).

The documentation doesn't tell you this. . . but if you are
going to make a call to LOAD, your prior call to SETLFS
does not set a secondary address. Instead, it sets a flag. A
value of binary zero allows the program to relocate as it is
loaded; any other (non-zero) value triggers a load to a fixed
address, with no relocation. This last is what is most often
wanted.

And in the case of LOAD, you do NOT want to add 96. If
your objective is relocation, the only value that works in the
Y register is zero. . . add 96 and it isn't zero any more, and
you will NOT relocate.

| don't use calls to LOAD much. In most cases, it seems to
me to be as easy to OPEN and read the bytes myself,
stacking them away under program control after examining
them. But if you wish to use LOAD, go ahead. .. just
remember that the SETLFS secondary address is really not
a secondary address at all.

One other related subject, to do with relative files. If you
want o position to a particular record in a file, you must use
the secondary address of that file in the “'P” command.
Again, | recommend that you use an added 96 as part of
the value. Thus, if you have coded:

OPEN 15,8,15
OPEN 1,2,3,"0:RELDATA,L, " + CHR$(75)

.. .opening a file, then to position to record number five, I'd
suggest:

PRINT#15,"P" + CHR$(99) + CHR$(5) + CHR$(0) + CHRS$(1)

The secondary address for the file is three, as shbwn in the
OPEN 1,2,3. .. statement. But I'd suggest that your position
command add 96 as shown to specify a secondary address of 9.

Do you need to carefully do all this, every time? | honestly don't
know for sure. Sometimes everything seems to work when you
don't worry about the extra bits. But when you carefully trace
Basic code (especially the 4.0 and 7.0 versions), you see that
Commodore always puts these extra values in. Maybe they
know something.

And with the wide variety.of disk drives and programs, you can
never be sure when you might come up with a combination that
needs those extra bits to be exactly right. I don't know about
you. .. but my data files are too important for me to take any
unnecessary chances.

(Cont'd from page 43)

8 SLM2intoR2 R2 = 00000011
CMP R2-M1 (carry clear)
SLR1 R1 = 0000 1000

Now we can stop, because all eight bits of M2 have been
processed.

M2 = 0000 0000

Here is how this process looks in assembler. To compare R2
and M1, a subtract is used. The result of this subtract is saved
in registers X and Y, so that the subtract does not have to be
repeated, thus saving a few cycles.

DLOOP EQU =
ASL M2 +1
ROL M2
ROL M2 +1
ROL R2
SEC
LDA R2 +1
SBC M1 +1
TAX
LDA R2
SBC M1
TAY
BCC SKIPSAVE
STX R2+1
STY R2
EQU »
ROL R1+1
ROL R1
LDA M2+1
BNE DLOOP
LDA M2
BNE DLOOP
RTS :
M1 HEX 0005
M2 HEX 002B
R1 HEX 0000
R2 HEX 0000

;save low byte

;save high byte

;store saved bytes
iinR2

SKIPSAVE
;shift carry from
;subtract into R1

Conclusion

To make these routines even faster, use zero page memory for all
the fields. They will also take less memory this way.

Where will these routines come in handy? Well, for starters, here
are some ideas.

— Graphics programs, for calculating the position of a dot, plotting a
line, or drawing a circle, or drawing a circle.

- Compilers, for calculating memory needed for arrays, or for
finding a specific element in an array. Also good for fast integer
multiply/divides.

~ Calculating prime numbers.

There are many places where multiplies or divides are used, and
anywhere one is used, one of these routines can make your code
from a few times to hundreds of times faster.

The Transactor

July 1987: Volume 8, Issue O1




	Slide 1
	Slide 2
	Slide 3

